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A model is proposed which is able to predict the maximum particle packing density (φm)
over a wide variety of ceramic suspensions with very large difference in particle size/shape,
particle surface chemistry, and solvent chemistry. This model provides a simple method to
obtain φm directly through the use of a few viscosity-concentration data for a given colloidal
suspension, rather than a best-fitting approach. The model is also capable of predicting the
viscosity of a variety of ceramic suspensions under different conditions of shear. A
comparison with some existing viscosity model is also presented. C© 2000 Kluwer
Academic Publishers

1. Introduction
The use of colloidal processing to produce ceramic
parts has attractive great attention for years primarily
because this technique offers a simpler and cheaper
way to fabricate ceramic parts with more reliable prop-
erties [1, 2] than those fabricated from other conven-
tional powder consolidation methods. For green-shape
processing through a colloidal suspension, a suspen-
sion with high solids loading and desirable rheological
properties is essentially needed. The former require-
ment may ensure considerable degree of microstruc-
ture homogeneity and higher particle packing density
[3–5]. The latter provides critical information on the
feasibility of the suspensions for specific green-shaping
applications such as slip casting, injection molding, etc.

In the study of rheological behavior of suspensions,
the relation between solid loading (φ) and viscosity
(η) has long received much attention. In short, increase
in solid loading (φ) increases suspension viscosity (η).
Thisφ - η relationship has been a focus of many theoret-
ical and experimental considerations for years. Almost
all of the theoretical work begins with the assumption of
spherical, non-interacting rigid particles in a dilute so-
lution. After the first equation proposed by Einstein [6]
in describingφ - η behavior, i.e.,

ηr = (1+ 2.5φ) (1)

whereηr is the relative viscosity defined as a ratio of
suspension viscosity (ηs) to the viscosity of suspending
medium (ηo), a number of equations with an extended
form of Equation 1 were vigorously proposed [7–9] for
moderate concentration. However, for suspensions with
highly-concentrated solid fraction as commonly used
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in ceramic processing, the prediction ofφ - η relation
from the viscosity models aforementioned is much less
accurate.

However, the predictive capability has much im-
proved for concentrated suspensions by taking the par-
ticle size distribution and most critically, the maximum
packing density (φm) into account, for instance, in an
eariler study by Chonget al. [10]

ηr =
[
1+ 0.75(φ/φm)

1− (φ/φm)

]2

(2)

whereφm is the maximum particle packing density of
a given powder. As indicated in Equation 2, suspension
viscosity tends to be infinite when the solid concentra-
tion in the suspension is close toφm. Studies clearly
confirm that the value ofφm can be enhanced or re-
duced by altering the particle size distribution [11–13].
Furthermore, with the advancement and understanding
of colloidal processing, interparticle interactions (at-
tractive and repulsive potential) were found to play a
crucial role in dominating rheological properties, e.g.,
viscosity, yield stress, and moduli of a suspension at
a given particle size distribution [1, 14–17]. In a pre-
vious study [18], the author presented a change inφm
due to the formation of particle agglomeration originat-
ing essentially from a change in interparticle potential
and foundφm can be reduced once the particles are
agglomerated.

In view of the literature, the value,φm, is by far
one of the most important parameters in describing the
rheological properties of collidal suspensions [10, 17,
19–23] as well as in the determination of interparticle
distance [24, 25]. This is particularly critical in some
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one-parameter equations (i.e., the solid concentration,
φ), for instance, as proposed by Chonget al. [10] and
Kitano et al. [20]. However, the value ofφm can be
further complicated by irregular particles, e.g., high-
aspect-ratio particles, and this makes a theoretical pre-
diction more difficult for a real suspension system. So
far, the most frequently-used method in determiningφm
is by means of a best-fit procedure to the rheological
data for a give suspension. The lack of a formulation
for φm may have drawbacks on a deeper understand-
ing on the effect of material parameters on rheological
properties for a further improvement of the suspensions
for specific green-shaping process as well as for other
applications, e.g., in the field of chemical engineering.
This is thus the primary goal of the present study. In
this paper, we propose an empirical equation primarily
for φm determination and verify it by comparing the
calculatedφm with the reportedφm available in the lit-
erature for a number of suspensions. Calculation will be
conducted in detail as a demonstration of the predictive
ability of the proposed model on highly-concentrated
ceramic suspensions principally for injection mold-
ing applications. Furthermore, an experiment is per-
formed by preparing a set of highly-concentrated zirco-
niawax mixtures with different solid concentrations for
a close comparison ofφm between the experimentally-
determined value and the calculated one.

2. Model
A variety of equations have been suggested for descrip-
tion ofφ - η behavior of suspensions. Among them, one
of the very simple forms for spherical particles is de-
rived theoretically by Maron and Pierse [26],

ηr =
(

1− φ
φm

)−2

(3)

Latter, a remarkable empirical expression was carefully
evaluated by Kitanoet al.[20] by modifying Equation 3
with a parameterA which is related to the packing con-
figuration of a given filler of arbitrary geometry,

ηr =
(

1− φ
A

)−2

(4)

Equation 4 is known to be applicable to a large variety of
suspensions having low to high solids loading, and most
importantly, is also valid for high-aspect-ratio fillers.
However, Equation 4 is only useful for suspensions at a
shear stress greater than 103 Pa. This is then improved
by Dabaket al. [23] who proposed a model which is
applicable over both low and high shear regions, having
a general form of

ηr =
[
1+ [η]φm φ

n (φm− φ)

]n

(5)

wheren is a suspension-dependent parameter and [η]
is the intrinsic viscosity which has a value of 2.5 for
non-interacting, rigid spherical particles. At sufficiently

high shear rate, the valuen= 2 and at low shear rate,
the n must be determined separately.

However, all the equations given above need a known
and precise value ofφm or A and then a further pre-
diction of suspension viscosity can proceed. Unfortu-
nately, so far, the determination ofφm both by analytical
prediction [27] and by experiment, e.g., sedimentation
technique [23], has its limitation on providing reliable
information. Therefore, the prediction ofφm is criti-
cally important and it should be best determined di-
rectly from rheological data measured experimentally
in realistic systems.

Inspection of the relationship on viscosity - concen-
tration equations, we found that they have a very basic
form of

1− η−1/n
r = f (φ) (6)

heren is equal to 2 for most high-shear applications as
described in Equations 3–5. Further, an extensive anal-
ysis reveals that a linear relationship between 1− η−1/2

r

andφ is frequently observed for a large variety of sus-
pensions with sufficient solid concentrations. (In fact,
such linearity can also be extracted from a number of
existing models, e.g., Equations 3–5. Therefore, Equa-
tion 6 can be expressed in an analytical form of,

1− η−1/2
r = aφ + b (7)

The constantsa (slope of the straight line) andb (inter-
cept value) have to be determined experimentally. From
Equation 7, it is clear that whenφ is close toφm the
relative viscosity (ηr) of suspensions becomes infinite,
i.e.,η−1/2

r = 0, and Equation 7 is expressed as,

1= aφm+ b (8)

Therefore, the maximum particle packing densityφm
can be calculated from Equation 8 by,

φm = 1− b

a
(9)

Once the constantsa and b are determined via
1− η−1/2

r −φ relation, a model which is basically used
to describe the viscosity behavior of suspensions is es-
tablished. This model can be expressed by rearrange-
ment of Equation 7, which yields

ηr = (1− aφ − b)−2 (10)

For highly-concentrated suspensions, Equation 10 can
be approximated as a form similar to that of Equation 4.

By incorporating Equation 9 into Equation 10, a new
viscosity model is then proposed, having an expression
of,

ηr = [a(φm− φ)]−2 (11)

The term (φm−φ) is clearly defined as the effective
space available for the particles to move in the matrix
media. Whenφ=>φm, the effective space will reduce
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and the viscosity of suspensions becomes thicker and
finally turns to be infinite at the point ofφm. Equation
11 is essentially a two-parameter equation and the pa-
rametersa andφm can be determined easily via a single
1− η−1/2

r −φ plot through the use of a few viscosity -
concentration data.

Since Equation 11 is proposed originally for highly-
concentrated suspensions under sufficient shear condi-
tions, it may be used to characterize the suspensions
over a wide variety of materials as well as shearing
conditions. For this purpose, we further propose that
Equation 11 can have a more general form of,

ηr = [a(φm− φ)]−n (12)

where n is a flow-dependent parameter and is also
suspension-specific. However, in the investigation, we
find a fairly good predictive ability of the newly-
proposed viscosity model with the use ofn= 2, i.e.,
Equation 11, for many ceramic powder suspensions to
be presented in following section.

3. Applications to ceramic suspensions
To examine the validity of Equations 7–9 forφm de-
termination, rheological data available from the exper-
imental work performed by Song and Evans [28] for
primarily ceramic injection molding applications are
first used for demonstration. The solid concentration
are relatively high, e.g., up to 70 vol% and the average
particle size employed is from 0.7µm to 1.5µm. These
powders are essentially different in geometry as well as
in the level of agglomeration.

By inserting the rheological data and corresponding
solid concentration into Equation 7, Fig. 1 shows the
resulting 1− η−1/2

r −φ curves for four different ZrO2
powders. As expected, the correlation is linear and by
extrapolation of the value 1− η−1/2

r to 1, a correspond-
ing valueφm is obtained for each powder. A comparison
of the maximum packing density between the calcu-
lated values (ca.φm) and the reported values (φm) is

Figure 1 The 1−η−1/2
r versus concentration (φ) curves, showing a well-

fitted linear correlation, for highly-concentrated suspensions prepared by
Songet al. [28] for ceramic injection molding application.

TABLE I A list of the comparison between reportedφm [23] and
calculatedφm from Equations 7–9 for different ceramic powder sus-
pensions. The range of solid fraction for the calculation ofφm for each
suspension is also tabulated in parentheses

Suspension
(solid fraction) φm (Reported) φm (Calculated)

Alumina-xylene 0.468 0.466
(0.42–0.45)

Alumina-Glycerin 0.550 0.542
(0.48–0.50)

Silica-Ethanol 0.652 0.655
(0.500–0.598)

Silica-Glycerol 0.640 0.639
(0.574–0.600)

Talc-Polyethylene 0.44 0.41
(0.15–0.30)

CaCO3-Polyethylene 0.52 0.55
(0.22–0.34)

also given in the legend of Fig. 1. The agreement is
excellent.

Using the same methodology, the maximum packing
density of a variety of ceramic suspensions which are
selected simply because each has a reportedφm value
is computed and is given in Table I. It is obvious that
the calculatedφm has a value identical or close to the
reportedφm for each suspension. Since all the available
data used for the determination of the maximum pack-
ing density in this study cover a wide spectrum of mate-
rial parameters such as particle size, shape, distribution,
and particle chemistry as well as the corresponding ma-
trix fluids, it may further confirm the feasibility of the
proposed equations, i.e., (7)–(9), for the determination
of the maximum packing density for given colloidal
suspensions.

4. Experimental verification
However, the rheological data onφm from the litera-
ture are mostly obtained through the use of best-fitting
procedure. It may need to have a close and direct exam-
ination. For this purpose, ZrO2-wax suspensions with
different solids loading, i.e., 55–64 vol% (the prepa-
ration procedure was detailed elsewhere [19, 29]) with
an incremental volume fraction of 1–2% were prepared.
The use of small fractional interval of the solid parti-
cles in the suspensions may ensure a better approach
with accuracy to the value ofφm directly observed in
comparison with the one calculated. The viscosity of
the suspensions was measured at 85◦C using a cap-
illary rheometer (Shimadzu, CFT-500D, Japan). Ac-
cordingly, if the suspensions can not be sheared under
a given shear stress (25 MPa) until the solid loading
is increased up to some critical value and the critical
value can then be considered as the solid loading that
should be the fraction closest to the maximum packing
density (φm). In order to justify the test, a correspond-
ing concentration-viscosity curve was established and
we find the extrapolatedφm (to infinite viscosity) from
the curve is rather close to the one observed from the
shear-deformed method.

The resulting flow behavior of the suspensions at an
increasing solid loading and the calculatedφm shows
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Figure 2 A comparison between the calculatedφm via 1− η−1/2
r −φ

relation and the value obtained by a close examination on a series of
highly-concentrated zirconia-wax suspensions with small increment of
solid fraction prepared currently.

that the suspensions are virtually flowable until a solid
loading of 0.64 is reached where no visible sign of
flow can be detected under the maximum shear force.
The suspension with the fraction of 0.64 behaves es-
sentially like a rigid solid under the condition of shear.
This indicates the maximum packing density should
probably be in the range of 0.63–0.64. By inserting the
obtained rheological data (some are abandoned due to
the limitation of the instrument) into the equations and
Fig. 2 shows, albeit not perfectly fitted, a linear relation
with correlation coefficient as good as 0.98, together
with an extrapolated value ofφm= 0.639. The extrap-
olatedφm=∼0.64 (estimated) was obtained from the
concentration-viscosity curve. Both show good agree-
ment. Therefore, it is reasonable to show that the cal-
culatedφm has a value just lying between the critical
solids loading experimentally observed. The agreement
on the maximum packing density between the experi-
mental examination and the calculation is good. This
further provides a direct and strong evidence on sup-
porting Equations 7–9 for a given real suspension.

5. Viscosity prediction
With the achievement ofφm via an extrapolation of
Equations 7–9, it should be possible to use the viscosity
model described in Equation 11 to predict the viscosity
of suspensions. Since the parameters a andφm are de-
termined experimentally for a given suspension, Equa-
tion 11 is a suspension-specific model which allows the
viscosity of a given suspension to be predicted precisely
once the parameters are accurately determined. To bet-
ter illustrate this, the data of relative viscosities (ηr)
from all the suspensions mentioned above are used and
plotted against the relative viscosity calculated from
Equation 11. Fig. 3 shows the resulting correlation (the
plot in the inset is the data at lower viscosity values).
As expected, the correlation is fairly good with a cor-
relation coefficientR2> 0.99. This finding strongly in-
dicates that the proposed viscosity model does offer a
simple and reliable method for viscosity prediction of

Figure 3 A comparison of the predicted viscosity using the newly-
proposed viscosity model (Equation 11) with the measured viscosity
for a wide variety of suspensions.

(a)

(b)

Figure 4 A comparison of the predictive capability of the viscosity
model between the Dabak-Yucel model (Equation 5) and the model cur-
rently proposed (Equation 11) over (a) low shear rate and (b) high shear
rate regions.

colloidal suspensions with a wide range of solid con-
centrations.

In comparison with existing viscosity models, the
Dabak-Yucel model, i.e., Equation 5, is selected which
has readily been confirmed to predict well the viscos-
ity for a large variety of ceramic suspensions over a
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wide range of shear conditions. The relative viscosi-
ties of the ceramic suspensions quoted from an article
by Dabaket al. [23] determined at low and high shear
rates are plotted against the relative viscosity predicted
by Equations 5 and 11 and are shown in Fig. 4a and b,
respectively. Obviously, both models illustrate roughly
the same predictive capability of the suspension vis-
cosity in a relatively accurate manner (their correla-
tion coefficients are relatively high and nearly identical
in both shear rate regions). According to Dabaket al.
[23], the low and high shear rate regions can be used
to represent non-Newtonian and Newtonian behaviors,
respectively, and this seems to indicate that the viscos-
ity model currently proposed is capable of predicting
the viscosity behavior for both non-Newtonian (e.g., in
cases of suspensions prepared currently and those re-
ported by Songet al.[28]) as well as Newtonian fluids.
Unlike the Dabak-Yucel model which is essentially a
three-parameter model, the parameters used to charac-
terize the equation have to be determined in a separate
manner, Equation 11 does offer a very simple method-
ology for characterizing a given suspension with suffi-
cient solid concentration.

6. Conclusions
A new model is proposed for the determination of the
maximum packing density (φm) for essentially concen-
trated colloidal suspensions, which has, to our knowl-
edge, rarely been reported. This model is essentially
suspension-specific and provides a direct and simple
methodology to calculate theφm in a relatively accu-
rate manner. After the parameters a andφm, which are
used to construct the newly-proposed equations, i.e.,
(7)–(9), are determined via experimentation, a corre-
sponding viscosity equation, i.e., Equations 11 or 12,
is established. This two-parameter viscosity equation
was found to predict the viscosity of a variety of ce-
ramic powder suspensions very well.
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